Contributions of five secondary metal uptake systems to metal homeostasis of Cupriavidus metallidurans CH34

J Bacteriol. 2011 Sep;193(18):4652-63. doi: 10.1128/JB.05293-11. Epub 2011 Jul 8.

Abstract

Cupriavidus metallidurans is adapted to high concentrations of transition metal cations and is a model system for studying metal homeostasis in difficult environments. The elemental composition of C. metallidurans cells cultivated under various conditions was determined, revealing the ability of the bacterium to shield homeostasis of one essential metal from the toxic action of another. The contribution of metal uptake systems to this ability was studied. C. metallidurans contains three CorA members of the metal inorganic transport (MIT) protein family of putative magnesium uptake systems, ZupT of the ZRT/IRT protein, or ZIP, family, and PitA, which imports metal phosphate complexes. Expression of the genes for all these transporters was regulated by zinc availability, as shown by reporter gene fusions. While expression of zupT was upregulated under conditions of zinc starvation, expression of the other genes was downregulated at high zinc concentrations. Only corA(1) expression was influenced by magnesium starvation. Deletion mutants were constructed to characterize the contribution of each system to transition metal import. This identified ZupT as the main zinc uptake system under conditions of low zinc availability, CorA(1) as the main secondary magnesium uptake system, and CorA(2) and CorA(3) as backup systems for metal cation import. PitA may function as a cation-phosphate uptake system, the main supplier of divalent metal cations and phosphate in phosphate-rich environments. Thus, metal homeostasis in C. metallidurans is achieved by highly redundant metal uptake systems, which have only minimal cation selectivity and are in combination with efflux systems that "worry later" about surplus cations.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Artificial Gene Fusion
  • Cations / metabolism
  • Cupriavidus / genetics
  • Cupriavidus / metabolism*
  • Gene Deletion
  • Gene Expression Profiling
  • Gene Expression Regulation, Bacterial
  • Genes, Reporter
  • Homeostasis*
  • Membrane Transport Proteins / genetics
  • Membrane Transport Proteins / metabolism*
  • Metals / metabolism*
  • beta-Galactosidase / genetics
  • beta-Galactosidase / metabolism

Substances

  • Cations
  • Membrane Transport Proteins
  • Metals
  • beta-Galactosidase