Proteomic analysis of the interleukin-4 (IL-4) response in hepatitis B virus-positive human hepatocelluar carcinoma cell line HepG2.2.15

Electrophoresis. 2011 Aug;32(15):2004-12. doi: 10.1002/elps.201100147. Epub 2011 Jul 8.

Abstract

Hepatitis B virus (HBV) infection is the leading cause of liver cirrhosis and hepatocellular carcinoma worldwide. In recent decades, significant progress toward understanding the molecular virology and pathogenesis of HBV infection has been made. In addition, multiple treatment modalities have been developed for persons with HBV infection. In the present study, we demonstrated that IL-4 inhibits the expression of hepatitis B surface antigen and hepatitis B e antigen in a HBV stably transfected hepatocellular carcinoma cell line (HepG2.2.15). To reveal the anti-HBV mechanism of IL-4 by proteomics, 2-DE and MS technology were utilized to profile global changes in protein expression in HepG2.2.15 cells after IL-4 treatment. A total of 56 differentially expressed proteins were identified in IL-4-treated HepG2.2.15 cells. To find out the interaction of these changed proteins by bioinformatics, signaling network analysis with the STRING tool showed that the identified proteins are primarily involved in transcription and proteolysis. Taken together, these results offer valuable clues for understanding the molecular mechanisms of the IL-4-mediated anti-HBV response.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Blotting, Western
  • Carcinoma, Hepatocellular / drug therapy*
  • Carcinoma, Hepatocellular / metabolism
  • Carcinoma, Hepatocellular / pathology
  • Carcinoma, Hepatocellular / virology*
  • Cell Growth Processes / drug effects
  • Cell Line, Tumor
  • Cluster Analysis
  • Electrophoresis, Gel, Two-Dimensional
  • Hepatitis B / drug therapy
  • Hepatitis B / immunology
  • Hepatitis B Surface Antigens / biosynthesis
  • Hepatitis B e Antigens / biosynthesis
  • Hepatitis B virus / immunology*
  • Host-Pathogen Interactions
  • Humans
  • Interleukin-4 / pharmacology*
  • Liver Neoplasms / drug therapy*
  • Liver Neoplasms / metabolism
  • Liver Neoplasms / pathology
  • Liver Neoplasms / virology*
  • Proteomics / methods
  • Reproducibility of Results
  • Signal Transduction
  • Tandem Mass Spectrometry

Substances

  • Hepatitis B Surface Antigens
  • Hepatitis B e Antigens
  • Interleukin-4