FePt and CoPt nanoparticles co-deposited on silicon dioxide-a comparative study

Nanotechnology. 2008 Feb 27;19(8):085701. doi: 10.1088/0957-4484/19/8/085701. Epub 2008 Feb 4.

Abstract

We compare CoPt and FePt nanoparticles grown under identical conditions on oxidized Si substrates by electron beam co-evaporation. Growth was performed under high vacuum conditions at substrate temperatures of 1023 K and was immediately followed by an annealing step. This process forms CoPt and FePt nanoparticles with mean diameters between ∼17 and ∼22 nm. In particular, the annealing step results in grain size enlargement for all samples and in a progressive magnetic hardening of the nanoparticles which reach maximum perpendicular coercivities of ∼6.6 kOe (for the CoPt) and ∼10.2 kOe (for the FePt nanoparticles). We show that, during this annealing step, a progressive transition towards the hard magnetic L1(0) ordered phase takes place in both materials. In contrast to FePt, CoPt nanoparticles must be annealed in order to crystallize in this phase.