Development of interdigital transducer sensors for non-destructive characterization of thin films using high frequency Rayleigh waves

Rev Sci Instrum. 2011 Jun;82(6):064905. doi: 10.1063/1.3600797.

Abstract

In this paper, Rayleigh waves were generated and studied over a broad frequency range (5-50 MHz) and from the dispersion phenomenon, two substrate on layer type-samples with thin layer thicknesses of 1 μm and 500 nm, respectively, were characterized. The originality in this paper is the use of surface acoustic wave interdigital transducers (IDT) to generate surface waves as well as the development of a measuring device enabling an accurate estimation of the phase velocity to be obtained, which is essential in order to characterize such thin layers. Considering the excitation frequencies (5-50 MHz) and therefore the widths necessary on the electrodes for these types of IDT sensors (20-200 μm), a lift-off procedure was chosen to deposit the electrodes on the lithium niobate (LiNbO(3)) piezoelectric substrates. The use of these IDT, first enabled problems of loss and attenuation linked to the high frequency of conventional sensors (wedge sensors) to be overcome and second to carry out quasi-monochromatic measurements in order to obtain an extremely accurate estimation of the phase velocity with rapid post-processing. An inverse method provided a very precise estimation of the thickness of the layers and the elastic constants of the substrate. The estimations of the thicknesses were then confirmed by measurements with a profilometer.