Dynamics of H+ + N2 at E(Lab) = 30 eV

J Chem Phys. 2011 Jun 14;134(22):224308. doi: 10.1063/1.3598511.

Abstract

The H(+) + N(2) system at E(Lab) = 30 eV, relevant in astrophysics, is investigated with the simplest-level electron nuclear dynamics (SLEND) method. SLEND is a time-dependent, direct, variational, non-adiabatic method that employs a classical-mechanics description for the nuclei and a single-determinantal wavefunction for the electrons. A canonical coherent-states procedure, intrinsic to SLEND, is used to reconstruct quantum vibrational properties from the SLEND classical mechanics. Present simulations employ three basis sets: STO-3G, 6-31G, and 6-31G∗∗, to determine their effect on the results, which include reaction visualizations, product predictions, and scattering properties. Present simulations predict non-charge-transfer scattering and N(2) collision-induced dissociation as the main reactions. Average vibrational energy transfer, H(+) energy-loss spectra, rainbow angle, and elastic vibrational differential cross sections at the SLEND∕6-31G∗∗ level agree well with available experimental data. SLEND∕6-31G∗∗ results are comparable to those calculated with the vibrational close-coupling rotational infinite-order sudden approximation and the quasi-classical trajectory method.