The evolution of complex biomaterial performance: The case of spider silk

Integr Comp Biol. 2009 Jul;49(1):21-31. doi: 10.1093/icb/icp013. Epub 2009 May 22.

Abstract

Spider silk is a high-performance biomaterial with exceptional mechanical properties and over half a century of research into its mechanics, structure, and biology. Recent research demonstrates that it is a highly variable class of materials that differs across species and individuals in complex and interesting ways. Here, we review recent literature on mechanical variation and evolution in spider silk. We then present new data on material properties of silk from nine species of spiders in the Mesothelae and Mygalomorphae, the two basal clades of spiders. Silk from spiders in the Araneomorphae (true spiders where most previous research on silk has focused) is significantly stronger and therefore much tougher than the silk produced by spiders in the basal groups. These data support the hypothesis that the success and diversity seen in araneomorph spiders is associated with the evolution of this high-performance fiber. This comparative approach shows promise as a way to understand complex, high-performance biomaterials.