In vitro assays for DNA pairing and recombination-associated DNA synthesis

Methods Mol Biol. 2011:745:363-83. doi: 10.1007/978-1-61779-129-1_21.

Abstract

Homologous recombination (HR) is a high-fidelity DNA repair pathway that maintains genome integrity, by repairing double strand breaks (DSBs) and single-stranded DNA (ssDNA) gaps and by supporting stalled/collapsed replication forks. The RecA/Rad51 family of proteins are the key enzymes in this homology-directed repair pathway, as they perform DNA strand invasion and exchange, in concert with a host of ancillary factors. In vitro, the RecA/Rad51 family of proteins share similar enzymatic activities including catalyzing ssDNA-stimulated ATP hydrolysis, formation of displacement loops (D-loops), and DNA strand exchange. After successful DNA strand invasion, DNA synthesis restores the lost genetic information using an undamaged DNA template. In this chapter, we describe two well-established biochemical assays to investigate the signature DNA strand transfer activity of RecA/Rad51 family of proteins: the D-loop assay and the DNA strand exchange reaction. Moreover, we describe a D-loop extension assay coupling D-loop formation with DNA synthesis, which can be used to define the roles of DNA polymerases in HR. Additionally, we present a protocol to investigate protein-mediated DNA annealing, a critical step in the synthesis-dependent strand annealing (SDSA) and double-Holliday junction (dHJ) pathways as well as the single-strand annealing (SSA) pathway. The quality of supercoiled plasmid DNA is critical in reconstituted HR reactions, and a protocol describing the preparation of this DNA substrate is included.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • DNA / genetics*
  • DNA Polymerase III / metabolism
  • Plasmids
  • Rad51 Recombinase
  • Rad52 DNA Repair and Recombination Protein / metabolism
  • Rec A Recombinases / metabolism
  • Recombination, Genetic / genetics*

Substances

  • Rad52 DNA Repair and Recombination Protein
  • DNA
  • DNA polymerase A
  • Rad51 Recombinase
  • Rec A Recombinases
  • DNA Polymerase III