Litter quality impacts short- but not long-term soil carbon dynamics in soil aggregate fractions

Ecol Appl. 2011 Apr;21(3):695-703. doi: 10.1890/09-2325.1.

Abstract

Complex molecules are presumed to be preferentially stabilized as soil organic carbon (SOC) based on the generally accepted concept that the chemical composition of litter is a major factor in its rate of decomposition. Hence, a direct link between litter quality and SOC quantity has been assumed, accepted, and ultimately incorporated in SOC models. Here, however, we present data from an incubation and field experiment that refutes the influence of litter quality on the quantity of stabilized SOC. Three different qualities of litter (Tithonia diversifolia, Calliandra calothyrsus, and Zea mays stover; 4 Mg C x ha(-1) yr(-1)) with and without the addition of mineral N fertilizer (0 or 120 kg N x ha(-1)season(-1) were added to a red clay Humic Nitisol in a 3-yr field trial and a 1.5-yr incubation experiment. The litters differed in their concentrations of N, lignin, and polyphenols with the ratio of (lignin + polyphenols): N ranging from 3.5 to 9.8 for the field trial and from 2.3 to 4.0 for the incubation experiment in the order of T. diversifolia < C. calothyrsus < or = Z. mays. Litter quality did not affect the amount of SOC stabilized after three annual additions in the field trial. Even within the most sensitive soil aggregate fractions, SOC contents and C:N ratios did not differ with litter quality, indicating that litter quality did not influence the mechanisms by which SOC was stabilized. While increasing litter quality displayed faster decomposition and incorporation of C into soil aggregates after 0.25 yr in the incubation study, all litters resulted in equivalent amounts of C stabilized in the soil after 1.5 yr, further corroborating the results of the field trial. The addition of N fertilizer did not affect SOC stabilization in either the field or the incubation trial. Thus, we conclude that, while litter quality controls shorter-term dynamics of C decomposition and accumulation in the soil, longer-term SOC patterns cannot be predicted based on initial litter quality effects. Hence, the formation and stabilization of SOC is more controlled by the quantity of litter input and its interaction with the soil matrix than by litter quality.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Asteraceae / chemistry*
  • Carbon / chemistry*
  • Fabaceae / chemistry*
  • Plant Leaves / chemistry
  • Soil / chemistry*
  • Time Factors
  • Zea mays / chemistry*

Substances

  • Soil
  • Carbon