Tunable photonic bandgap in a one-dimensional superconducting-dielectric superlattice

Appl Opt. 2011 Jun 1;50(16):2370-5. doi: 10.1364/AO.50.002370.

Abstract

The transmittance of one-dimensional photonic crystals consisting of superconductor and lossless dielectric has been systematically studied through the transfer-matrix method. Obviously, the shift of the photonic bandgap (PBG) becomes more noticeable by adjusting the thicknesses of the dielectric layers than that of superconductor layers. Furthermore, the number of PBGs can be controlled by varying the thicknesses of dielectric layers. Compared to the thicknesses of the dielectric layers, the width of the PBGs is more sensitive to the thicknesses of the superconductor layers. However, the width of the first PBG promptly varies when the thicknesses of the dielectric layers increase from 0 to 40 nm. If the contribution of the normal conducting electrons of the superconductor is nonnegligible, the temperature of the superconductor has no influence on the width of the PBGs. Moreover, the damp coefficient does not affect the PBGs under low-temperature conditions.