Role of bifidobacteria in the activation of the lignan secoisolariciresinol diglucoside

Appl Microbiol Biotechnol. 2011 Oct;92(1):159-68. doi: 10.1007/s00253-011-3338-8. Epub 2011 May 26.

Abstract

Lignans are ubiquitous plant polyphenols, which have relevant health properties being the major phytoestrogens occurring in Western diets. Secoisolariciresinol (SECO) is the major dietary lignan mostly found in plants as secoisolariciresinol diglucoside (SDG). To exert biological activity, SDG requires being deglycosylated to SECO and transformed to enterodiol (ED) and enterolactone (EL) by the intestinal microbes. The involvement of bifidobacteria in the transformation of lignans glucosides has been investigated for the first time in this study. Twenty-eight strains were assayed for SDG and SECO activation. They all failed to transform SECO into reduced metabolites, excluding any role in ED and EL production. Ten Bifidobacterium cultures partially hydrolyzed SDG, giving both SECO and the monoglucoside with yields < 25%. When the cell-free extracts were assayed in SDG transformation, seven additional strains were active in the hydrolysis. Cellobiose induced β-glucosidase activity and caused the enhancement of both the rate of SDG hydrolysis and the final yield of SECO only in the strains capable of SDG bioconversion. The highest SDG conversion to SECO was achieved by Bifidobacterium pseudocatenulatum WC 401, which exhibited 75% yield in cellobiose-based medium after 48 h. These results indicate that SDG hydrolysis is not a common feature in Bifidobacterium genus, but selected probiotic strains can be combined to β-glucoside-based prebiotics to enhance the release of SECO, thus improving its bioavailability for absorption by colonic mucosa and/or the biotransformation to ED and EL by other intestinal microorganisms.

MeSH terms

  • 4-Butyrolactone / analogs & derivatives
  • 4-Butyrolactone / metabolism
  • Bifidobacterium / metabolism*
  • Biotransformation
  • Butylene Glycols / metabolism*
  • Glucosides / metabolism*
  • Lignans / metabolism*

Substances

  • Butylene Glycols
  • Glucosides
  • Lignans
  • 2,3-bis(3'-hydroxybenzyl)butane-1,4-diol
  • secoisolariciresinol
  • 4-Butyrolactone
  • secoisolariciresinol diglucoside
  • 2,3-bis(3'-hydroxybenzyl)butyrolactone