Protein kinase C promotes N-methyl-D-aspartate (NMDA) receptor trafficking by indirectly triggering calcium/calmodulin-dependent protein kinase II (CaMKII) autophosphorylation

J Biol Chem. 2011 Jul 15;286(28):25187-200. doi: 10.1074/jbc.M110.192708. Epub 2011 May 23.

Abstract

Regulation of neuronal NMDA receptor (NMDAR) is critical in synaptic transmission and plasticity. Protein kinase C (PKC) promotes NMDAR trafficking to the cell surface via interaction with NMDAR-associated proteins (NAPs). Little is known, however, about the NAPs that are critical to PKC-induced NMDAR trafficking. Here, we showed that calcium/calmodulin-dependent protein kinase II (CaMKII) could be a NAP that mediates the potentiation of NMDAR trafficking by PKC. PKC activation promoted the level of autophosphorylated CaMKII and increased association with NMDARs, accompanied by functional NMDAR insertion, at postsynaptic sites. This potentiation, along with PKC-induced long term potentiation of the AMPA receptor-mediated response, was abolished by CaMKII antagonist or by disturbing the interaction between CaMKII and NR2A or NR2B. Further mutual occlusion experiments demonstrated that PKC and CaMKII share a common signaling pathway in the potentiation of NMDAR trafficking and long-term potentiation (LTP) induction. Our results revealed that PKC promotes NMDA receptor trafficking and induces synaptic plasticity through indirectly triggering CaMKII autophosphorylation and subsequent increased association with NMDARs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2 / genetics
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2 / metabolism*
  • Enzyme Activation / physiology
  • Long-Term Potentiation / physiology
  • Male
  • Phosphorylation / physiology
  • Protein Kinase C / genetics
  • Protein Kinase C / metabolism*
  • Protein Transport / physiology
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, N-Methyl-D-Aspartate / genetics
  • Receptors, N-Methyl-D-Aspartate / metabolism*
  • Signal Transduction / physiology*
  • Synaptic Membranes / genetics
  • Synaptic Membranes / metabolism*

Substances

  • Receptors, N-Methyl-D-Aspartate
  • Protein Kinase C
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2