O1s photoionization dynamics in oriented NO2

J Chem Phys. 2011 May 14;134(18):184305. doi: 10.1063/1.3584202.

Abstract

We have performed extensive density functional theory (DFT) calculations, partial cross sections, dipole prepared continuum orbitals, dipole amplitudes and phase shifts, asymmetry parameters β, and molecular frame photoelectron angular distributions, to elucidate the O1s photoionization dynamics of NO(2) molecule with emphasis on the shape resonances in the O1s ionization continuum. In the shape resonance region, the β parameters and photoelectron angular distributions have been compared with our experimental results. Fairly good agreement between the theory and experiment has confirmed that the DFT level calculations can well describe the photoionization dynamics of the simple molecule such as NO(2). Interference due to equivalent atom photoionization is theoretically considered, and the possibility of detection of the effect in the two degenerate channels with different combinations of light polarization and photoemission direction is discussed.