Chloroplast simple sequence repeats (cpSSRs): technical resources and recommendations for expanding cpSSR discovery and applications to a wide array of plant species

Mol Ecol Resour. 2009 May;9(3):673-90. doi: 10.1111/j.1755-0998.2008.02319.x. Epub 2009 Jan 28.

Abstract

Chloroplast microsatellites, or simple sequence repeats (cpSSRs), are typically mononucleotide tandem repeats. When located in the noncoding regions of the chloroplast genome (cpDNA), they commonly show intraspecific variation in repeat number. Despite the growing number of studies applying cpSSRs, studies of economically important plants and their relatives remain over-represented. Thus, the potential of cpSSRs to offer unique insights into ecological and evolutionary processes in wild plant species has yet to be fully realized. This review provides an overview of the technical resources available to aid cpSSR discovery including a list of cpSSR primer sets available and cpDNA sequencing resources. Our updated analysis of 99 whole chloroplast genomes downloaded from GenBank confirms that potentially variable cpSSRs are abundant in the noncoding cpDNA of plants. Overall variation in the frequency of cpSSRs was extreme, ranging from one to 700 per genome (median = 93), while in 81 vascular plants, between 35 and 160 cpSSRs were detected per genome (median = 86). We offer five recommendations to aid wider development and application of cpSSRs: (i) When genus-specific cpSSR primers are available, cross-species amplification can often be fruitful. (ii) While potentially useful, universal cpSSR primers at best provide access to only a small number of variable markers. (iii) De novo sequencing of noncoding cpDNA is the most effective and efficient way to develop cpSSR markers in wild species. (iv) DNA sequencing of cpSSR alleles is essential, given the complex nature of the genetic variation associated with hypervariable cpDNA regions. (v) The reliability of cpSSR length based genetic assays need to be validated in all studies.