Expanding the solar spectrum used by photosynthesis

Trends Plant Sci. 2011 Aug;16(8):427-31. doi: 10.1016/j.tplants.2011.03.011. Epub 2011 Apr 12.

Abstract

A limiting factor for photosynthetic organisms is their light-harvesting efficiency, that is the efficiency of their conversion of light energy to chemical energy. Small modifications or variations of chlorophylls allow photosynthetic organisms to harvest sunlight at different wavelengths. Oxygenic photosynthetic organisms usually utilize only the visible portion of the solar spectrum. The cyanobacterium Acaryochloris marina carries out oxygenic photosynthesis but contains mostly chlorophyll d and only traces of chlorophyll a. Chlorophyll d provides a potential selective advantage because it enables Acaryochloris to use infrared light (700-750 nm) that is not absorbed by chlorophyll a. Recently, an even more red-shifted chlorophyll termed chlorophyll f has been reported. Here, we discuss using modified chlorophylls to extend the spectral region of light that drives photosynthetic organisms.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Chlorophyll / chemistry*
  • Chlorophyll / metabolism
  • Chlorophyll A
  • Cyanobacteria / chemistry*
  • Cyanobacteria / metabolism
  • Oxygen
  • Photosynthesis / radiation effects*
  • Plants / chemistry
  • Sunlight*

Substances

  • Chlorophyll
  • chlorophyll b
  • chlorophyll d
  • Oxygen
  • Chlorophyll A