Dynamical diffraction simulations in FePt--I

Microsc Microanal. 2011 Jun;17(3):398-402. doi: 10.1017/S1431927611000134. Epub 2011 Apr 15.

Abstract

A series of multislice simulations to quantify the effect of various degrees of order, composition, and thickness on the electron diffracted intensities were performed using the L1₀ FePt system as the case study. The dynamical diffraction studies were done in both a convergent electron beam diffraction and selected area electron diffraction condition. The L1₀ symmetry demonstrated some peculiar challenges in the simulation, in particular between the {111} plane normal and the <111> direction, which are not equivalent because of tetragonality. A hybrid weighting function atom of Fe-Pt was constructed to account for S < 1 or nonequiatomic compositions. This statistical approach reduced the complexity of constructing a crystal with the probability that a particular atom was at a particular lattice site for a given order parameter and composition. Considerations of accelerating voltage, convergent angle, and thermal effects are discussed. The simulations revealed significant differences in intensity ratios between films of various compositions but equivalent unit cell numbers and degree of order.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.