Towards quantitative catalytic lignin depolymerization

Chemistry. 2011 May 16;17(21):5939-48. doi: 10.1002/chem.201002438. Epub 2011 Apr 6.

Abstract

The products of base-catalyzed liquid-phase hydrolysis of lignin depend markedly on the operating conditions. By varying temperature, pressure, catalyst concentration, and residence time, the yield of monomers and oligomers from depolymerized lignin can be adjusted. It is shown that monomers of phenolic derivatives are the only primary products of base-catalyzed hydrolysis and that oligomers form as secondary products. Oligomerization and polymerization of these highly reactive products, however, limit the amount of obtainable product oil containing low-molecular-weight phenolic products. Therefore, inhibition of concurrent oligomerization and polymerization reactions during hydrothermal lignin depolymerization is important to enhance product yields. Applying boric acid as a capping agent to suppress addition and condensation reactions of initially formed products is presented as a successful approach in this direction. Combination of base-catalyzed lignin hydrolysis with addition of boric acid protecting agent shifts the product distribution to lower molecular weight compounds and increases product yields beyond 85%.