Synthesis of a hybrid assembly composed of titanium dioxide nanoparticles and thin multi-walled carbon nanotubes using "click chemistry"

J Colloid Interface Sci. 2011 Jun 15;358(2):471-6. doi: 10.1016/j.jcis.2011.03.040. Epub 2011 Mar 16.

Abstract

A hybrid assembly composed of thin multi-walled carbon nanotubes (t-MWCNT) and titanium dioxide (TiO(2)) has been prepared by using "click" chemistry for photocatalytic applications. TiO(2)-decorated t-MWCNT hybrids with anatase phase TiO(2) were obtained from the reaction of an azide moiety-containing TiO(2) with alkyne-functionalized t-MWCNTs. The hybrids were systematically characterized using Fourier transform infrared spectroscopic (FT-IR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrum (EDX), and X-ray diffraction (XRD) measurements. The nanohybrid has been proved to be highly active and robust for photocatalytic degradation of methyl orange. The click coupling approach is a simple and convenient route to efficiently assemble TiO(2) on the surface of carbon nanotubes, and can be extended to obtain many other nanoparticle hybrids based on carbon nanotubes.