Co-precipitation synthesis and characterization of NiO-Ce0.8Sm0.2O1.9 nanocomposite powders: effect of precipitation agents

J Nanosci Nanotechnol. 2011 Mar;11(3):2336-43. doi: 10.1166/jnn.2011.3122.

Abstract

NiO-Ce0.8Sm0.2O1.9 (NiO-SDC) nanocomposite powders applied as promising anode material for low-temperature solid oxide fuel cells (SOFCs) were synthesized by hydroxide co-precipitation method using NH3 x H2O, NaOH and NH3 x H2O + NaOH as precipitation agents. The crystal phases, morphologies and sintering behavior of the synthesized NiO-SDC nanocomposite powders were investigated by means of X-ray diffraction (XRD), transmission electron microscopy (TEM) and sintering experiments. The effect of precipitation agents on the synthesis of the NiO-SDC nanocomposite powders was discussed. Results show that different precipitation agents influence greatly the synthesis and characteristics of the NiO-SDC nanocomposite powders. The NiO-SDC nanocomposite powders synthesized with NH3 x H2O deviate from the original composition due to the loss of Ni. The loss of Ni is avoided and nano-sized NiO-SDC composite powders are synthesized, when NaOH and NH3 x H2O + NaOH are used as precipitation agents. The NiO-SDC nanocomposite powders can be synthesized at relatively low temperature using NH3 x H2O + NaOH as precipitation agent, and the synthesized NiO-SDC nanocomposite powders show good sintering characteristics.

MeSH terms

  • Cerium / chemistry*
  • Chemical Precipitation
  • Crystallization / methods*
  • Macromolecular Substances / chemistry
  • Materials Testing
  • Molecular Conformation
  • Nanostructures / chemistry*
  • Nanostructures / ultrastructure*
  • Nanotechnology / methods
  • Nickel / chemistry*
  • Particle Size
  • Powders
  • Surface Properties

Substances

  • Macromolecular Substances
  • Powders
  • Cerium
  • ceric oxide
  • Nickel
  • nickel monoxide