Structure and properties of ionic fullerene complex Co(+)(dppe)2·(C60˙-)·(C6H4Cl2)2: distortion of the ordered fullerene cage of C60˙- radical anions

Dalton Trans. 2011 May 7;40(17):4453-8. doi: 10.1039/c1dt10039d. Epub 2011 Mar 21.

Abstract

New ionic complex {Co(+)(dppe)(2)}·(C(60)˙(-))·(C(6)H(4)Cl(2))(2) (1) was obtained by the reduction of a Co(dppe)Br(2) and C(60) mixture by TDAE in o-dichlorobenzene followed by precipitation of crystals by hexane. Optical and EPR spectra of 1 indicated the formation of C(60)˙(-) radical anions and diamagnetic Co(+)(dppe)(2) cations. The structure of 1 solved at 100(2) K involves chains of C(60)˙(-) arranged along the lattice a-axis with a center-to-center distance of 10.271 Å. The chains are separated by bulky Co(+)(dppe)(2) cations and solvent molecules. All components of 1 are well ordered allowing the distortion of the C(60)˙(-) radical anion to be analyzed. An elongation of the C(60)˙(-) sphere by 0.0254(2) was found. It is essentially smaller than those in the salts (Cp*(2)Ni(+))·(C(60)˙(-))·CS(2) and (PPN(+))(2)·(C(60)(2-)) with greater distortion of the fullerene cage. The calculation of the electronic structure of fullerene by the extended Hückel method showed slight splitting of the C(60) LUMO, due to the distortion, by three levels. Two levels are located 180 and 710 cm(-1) higher than the ground level. The averaged 6-6 and 5-6 bonds in C(60)˙(-) with lengths of 1.397(2) and 1.449(2) Å are close to those determined for the C(60)(2-) dianions in (PPN(+))(2)·(C(60)(2-)), but are slightly longer and shorter, respectively, than the length of these bonds in neutral C(60).