Disorder of (NH4)3H(SO4)2 in the high-temperature phase I

Acta Crystallogr B. 2011 Apr;67(Pt 2):116-21. doi: 10.1107/S0108768111007269. Epub 2011 Mar 10.

Abstract

The highly disordered crystal structure of triammonium hydrogen disulfate, (NH(4))(3)H(SO(4))(2), in the high-temperature phase I was studied using single-crystal neutron diffraction. It is known that the O atom involved in hydrogen bonding between neighbouring SO(4) tetrahedra is disordered and takes a split-atom position, building a two-dimensional hydrogen-bond network in the (001) plane. The H atoms in these SO(4)-H-SO(4) hydrogen bonds are disordered and hence refined with a split-atom model. Moreover, from the much larger anisotropic mean-square displacements of ammonium protons the NH(4)(+) groups were refined with a reasonable split-atom model, and their motional behaviour was also analysed by rigid-body treatment. Finally, careful consideration was given to show possible supplementary proton migration between the ammonium protons and those of the hydrogen bonds in this high-temperature phase.