Self-assembly of mixed Pt and Au nanoparticles on PDDA-functionalized graphene as effective electrocatalysts for formic acid oxidation of fuel cells

Phys Chem Chem Phys. 2011 Apr 21;13(15):6883-91. doi: 10.1039/c0cp02495c. Epub 2011 Mar 16.

Abstract

Pt and Au nanoparticles with controlled Pt : Au molar ratios and PtAu nanoparticle loadings were successfully self-assembled onto poly(diallyldimethylammonium chloride) (PDDA)-functionalized graphene (PDDA-G) as highly effective electrocatalysts for formic acid oxidation in direct formic acid fuel cells (DFAFCs). The simultaneously assembled Pt and Au nanoparticles on PDDA-G showed superb electrocatalytic activity for HCOOH oxidation, and the current density associated with the preferred dehydrogenation pathway for the direct formation of CO(2) through HCOOH oxidation on a Pt(1)Au(8)/PDDA-G (i.e., a Pt : Au ratio of 1 : 8) is 32 times higher than on monometallic Pt/PDDA-G. The main function of the Au in the mixed Pt and Au nanoparticles on PDDA-G is to facilitate the first electron transfer from HCOOH to HCOO(ads) and the effective spillover of HCOO(ads) from Au to Pt nanoparticles, where HCOO(ads) is further oxidized to CO(2). The Pt : Au molar ratio and PtAu nanoparticle loading on PDDA-G supports are the two critical factors to achieve excellent electrocatalytic activity of PtAu/PDDA-G catalysts for the HCOOH oxidation reactions.