Topology of magnetic field lines: chaos and bifurcations emerging from two-action systems

Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 2):016205. doi: 10.1103/PhysRevE.83.016205. Epub 2011 Jan 6.

Abstract

Nonlinear dynamics of magnetic field lines generated by simple electric current elements are investigated. In general, the magnetic field lines show behavior similar to that of the Hamiltonian systems; in fact, they can be generally transformed into Hamiltonian systems with 1.5 degrees of freedom, obey the Kolmogorov-Arnold-Moser (KAM) theorem, and generate chaotic trajectories. In the case where unperturbed systems are described by two action (slow) and one angle (fast) variables, however, it is found that the periodic orbits of the unperturbed systems vanish for arbitrarily small symmetry-breaking perturbations (a breakdown of the KAM theorem) and drifting or periodic trajectories appear. The mechanism of this phenomenon is investigated analytically by weak nonlinear stability analysis. It is also shown numerically that scattering processes of the perturbed system exhibit typical features of chaotic dynamical systems.