Design and fabrication of teflon-coated tungsten nanorods for tunable hydrophobicity

Langmuir. 2011 Apr 19;27(8):4661-8. doi: 10.1021/la104891u. Epub 2011 Mar 15.

Abstract

The nature of water interaction with tungsten nanorods (WNRs) fabricated by the glancing-angle deposition technique (GLAD)-using RF magnetron sputtering under various Ar pressures and substrate tilting angles and then subsequent coating with Teflon-has been studied and reported. Such nanostructured surfaces have shown strong water repellency properties with apparent water contact angles (AWCA) of as high as 160°, which were found to depend strongly upon the fabrication conditions. Variations in Ar pressure and the substrate tilting angle resulted in the generation of WNRs with different surface roughness and porosity properties. A theoretical model has been proposed to predict the observed high AWCAs measured at the nanostructure interfaces. The unique pyramidal tip geometry of WNRs generated at low Ar pressure with a high oblique angle reduced the solid fraction at the water interface, explaining the high AWCA measured on such surfaces. It was also found that the top geometrical morphologies controlling the total solid fraction of the WNRs are dependent upon and controlled by both the Ar pressure and substrate tilting angle. The water repellency of the tungsten nanorods with contact angles as high as 160° suggests that these coatings have enormous potential for robust superhydrophobic and anti-icing applications in harsh environments.