DNA fragmentation in chicken spermatozoa during cryopreservation

Theriogenology. 2011 Jun;75(9):1613-22. doi: 10.1016/j.theriogenology.2011.01.001. Epub 2011 Mar 11.

Abstract

Semen cryopreservation is fundamental both for the practice of artificial insemination, and for the conservation of genetic resources in cryobanks; nevertheless, there is still not an efficient standard freezing procedure assuring a steady and suitable level of fertility in fowl, and consequently there is no systematic use of frozen semen in the poultry industry. This study examined changes in motility (CASA), cell membrane integrity (Ethidium Bromide (EtBr) exclusion procedure and stress test) and DNA fragmentation (neutral comet assay) in fowl spermatozoa before, during and after cryopreservation and storage at -196 °C. An optimized comet assay for chicken semen was studied and applied to the analyses. Semen collected from 18 Mericanel della Brianza (local Italian breed) male chicken breeders was frozen in pellets and thawed in a water bath at 60 °C. Measurements were performed on fresh semen soon after dilution, after equilibration with 6% dimethylacetamide at 4 °C (processed semen) and after thawing. Sperm DNA damage occurred during cryopreservation of chicken semen and the proportion of spermatozoa with damaged DNA significantly increased from 6.2% in fresh and 6.4% in processed semen to 19.8% in frozen-thawed semen. The proportion of DNA in the comet tail of damaged spermatozoa was also significantly affected by cryopreservation, with an increase found from fresh (26.3%) to frozen-thawed (30.9%) sperm, whereas processed semen (30.1%) didn't show significant differences. The proportion of total membrane damaged spermatozoa (EtBr exclusion procedure) did not increase by 4 °C equilibration time, and greatly and significantly increased by cryopreservation; the values recorded in fresh, processed and frozen semen were 2.9, 5.6, and 66.7% respectively. As regards the proportion of damaged cells in the stress test, all values differed significantly (7.1% fresh semen, 11.7% processed semen, 63.7% frozen semen). Total motility was not affected by equilibration (52.1% fresh semen, 51.9% processed semen), whereas it decreased significantly after cryopreservation (19.8%). These results suggest a low sensitivity of frozen-thawed chicken spermatozoa to DNA fragmentation, therefore it should not be considered as a major cause of sperm injuries during cryopreservation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Membrane / physiology
  • Cell Membrane / ultrastructure
  • Chickens*
  • Comet Assay
  • Cryopreservation / methods
  • Cryopreservation / veterinary*
  • DNA Fragmentation*
  • Male
  • Sperm Motility
  • Spermatozoa / physiology*
  • Spermatozoa / ultrastructure