Design, synthesis, and characterization of a single-chain peptide antagonist for the relaxin-3 receptor RXFP3

J Am Chem Soc. 2011 Apr 6;133(13):4965-74. doi: 10.1021/ja110567j. Epub 2011 Mar 8.

Abstract

Relaxin-3 is a two-chain disulfide-rich peptide that is the ancestral member of the relaxin peptide family and, together with its G protein-coupled receptor RXFP3, is highly expressed in the brain. Strong evolutionary conservation of relaxin-3 suggests a critical biological function and recent studies have demonstrated modulation of sensory, neuroendocrine, metabolic, and cognitive systems. However, detailed studies of central relaxin-3-RXFP3 signaling have until now been severely hampered by the lack of a readily available high-affinity antagonist for RXFP3. Previous studies have utilized a complex two-chain chimeric relaxin peptide, R3(BΔ23-27)R/I5, in which a truncated relaxin-3 B-chain carrying an additional C-terminal Arg residue was combined with the insulin-like peptide 5 (INSL5) A-chain. In this study we demonstrate that, by replacing the native Cys in this truncated relaxin-3 B-chain with Ser, a single-chain linear peptide of 23 amino acids that retains high-affinity antagonism for RXFP3 can be achieved. In vivo studies demonstrate that this peptide, R3 B1-22R, antagonized relaxin-3/RXFP3 induced increases in feeding in rats after intracerebroventricular injection. Thus, R3 B1-22R represents an excellent tool for biological studies probing relaxin pharmacology and a lead molecule for the development of synthetically tractable, single-chain RXFP3 modulators for clinical use.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CHO Cells
  • Cell Line
  • Cricetinae
  • Cricetulus
  • Humans
  • Ligands
  • Male
  • Models, Molecular
  • Rats
  • Rats, Sprague-Dawley
  • Receptors, G-Protein-Coupled / antagonists & inhibitors*
  • Receptors, G-Protein-Coupled / chemistry
  • Relaxin / analogs & derivatives
  • Relaxin / chemistry
  • Relaxin / pharmacology*
  • Structure-Activity Relationship

Substances

  • Ligands
  • RXFP3 protein, human
  • Receptors, G-Protein-Coupled
  • Relaxin