Alternate approaches to repress endogenous microRNA activity in Arabidopsis thaliana

Plant Signal Behav. 2011 Mar;6(3):349-59. doi: 10.4161/psb.6.3.14340. Epub 2011 Mar 1.

Abstract

MicroRNAs (miRNAs) are an endogenous class of regulatory small RNA (sRNA). In plants, miRNAs are processed from short non-protein-coding messenger RNAs (mRNAs) transcribed from small miRNA genes (MIR genes). Traditionally in the model plant Arabidopsis thaliana (Arabidopsis), the functional analysis of a gene product has relied on the identification of a corresponding T-DNA insertion knockout mutant from a large, randomly-mutagenized population. However, because of the small size of MIR genes and presence of multiple, highly conserved members in most plant miRNA families, it has been extremely laborious and time consuming to obtain a corresponding single, or multiple, null mutant plant line. Our recent study published in Molecular Plant ( 1) outlines an alternate method for the functional characterization of miRNA action in Arabidopsis, termed anti-miRNA technology. Using this approach we demonstrated that the expression of individual miRNAs, or entire miRNA families, can be readily and efficiently knocked-down. Our approach is in addition to two previously reported methodologies that also allow for the targeted suppression of either individual miRNAs, or all members of a MIR gene family; these include miRNA target mimicry and transcriptional gene silencing (TGS) of MIR gene promoters. All three methodologies rely on endogenous gene regulatory machinery and in this article we provide an overview of these technologies and discuss their strengths and weaknesses in inhibiting the activity of their targeted miRNA(s).

Publication types

  • Review

MeSH terms

  • Arabidopsis / genetics
  • Arabidopsis / metabolism*
  • Gene Silencing / physiology
  • MicroRNAs / genetics*
  • Models, Biological

Substances

  • MicroRNAs