Can human mesenchymal stem cells survive on a NiTi implant material subjected to cyclic loading?

Acta Biomater. 2011 Jun;7(6):2733-9. doi: 10.1016/j.actbio.2011.02.022. Epub 2011 Feb 21.

Abstract

Nickel-titanium shape memory alloys (NiTi-SMAs) exhibit mechanical and chemical properties which make them attractive candidate materials for various types of biomedical applications. However, the high nickel content of NiTi-SMAs may result in adverse tissue reactions, especially when they are considered for load-bearing implants. It is generally assumed that a protective titanium oxide layer separates the metallic alloy from its environment and that this explains the good biocompatibility of NiTi. Cyclic loading may result in failure of the protective oxide layer. The scientific objective of this work was to find out whether cyclic dynamic strain, in a range relevant for orthopedic implants, diminishes the biocompatibility of NiTi-SMAs. In order to analyze the biocompatibility of NiTi-SMA surfaces subjected to cyclic loading, NiTi-SMA tensile specimens were preloaded with mesenchymal stem cells, transferred to a sterile cell culture system and fixed to the pull rods of a tensile testing machine. Eighty-six thousand and four hundred strain cycles at 2% pseudoelastic strain were performed for a period of 24 h or 7 days. Cytokines (IL-6, IL-8 and VEGF) and nickel ion release were determined within the cell culture medium. Adherent cells on the tensile specimens were stained with calcein-AM and propidium iodide to determine cell viability. Dynamic loading of the tensile specimens did not influence the viability of adherent human mesenchymal stem cells (hMSCs) after 24 h or 7 days compared with the non-strained control. Dynamic cycles of loading and unloading did not affect nickel ion release from the tensile specimens. The release of IL-6 from hMSCs cultured under dynamic conditions was significantly higher after mechanical load (873 pg ml(-1)) compared with static conditions (323 pg ml(-1)). The present work demonstrates that a new type of mechanical in vitro cell culture experiment can provide information which previously could only be obtained in large animal experiments.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biocompatible Materials
  • Cell Survival*
  • Cells, Cultured
  • Humans
  • Mesenchymal Stem Cells / cytology*
  • Nickel / chemistry*
  • Tensile Strength
  • Titanium / chemistry*

Substances

  • Biocompatible Materials
  • Nickel
  • Titanium