Microporous {[Ni(cyclam)]3[W(CN)8]2}n affording reversible structural and magnetic conversions

Dalton Trans. 2011 Mar 28;40(12):3067-73. doi: 10.1039/c0dt01434f. Epub 2011 Feb 17.

Abstract

Methanol adsorption into the porous 2D bimetallic coordination network {[Ni(cyclam)](3)[W(CN)(8)](2)}(n) (cyclam = 1,4,8,11-tetraazacyclotetradecane) causes significant modification of its structure and magnetic properties. Fully reversible transformations between the three states of the network: anhydrous, hydrated and methanol-modified are observed with the transition to the magnetic ordered state at T(c) equal to 4.9 K, 8.3 K and 11.4 K respectively. All three phases have a metamagnetic character but the methanol-modified one most easily turns to ferromagnetic and shows a hysteresis loop with coercivity field of 250 Oe. The differences in magnetic behaviour of the anhydrous and guest-induced forms of the compound are discussed in terms of changes in the structure: CN-bridge geometry and distance between the layers.