Betel quid chewing as a source of manganese exposure: total daily intake of manganese in a Bangladeshi population

BMC Public Health. 2011 Feb 7:11:85. doi: 10.1186/1471-2458-11-85.

Abstract

Background: A relationship between betel quid chewing in Bangladeshi populations and the development of skin lesions and tremor has been previously reported, for people exposed to high levels of arsenic (As) through drinking contaminated groundwater. Exposure to manganese (Mn) is also known to induce neurotoxicity and levels of Mn in Bangladeshi groundwater are also high. The present study evaluates betel quid chewing as an overlooked source of Mn exposure in a Bangladeshi population.

Methods: Inductively coupled plasma mass spectrometry (ICP-MS) was used to determine (1) urinary Mn levels for 15 chewers and 22 non-chewers from the ethnic Bangladeshi community in the United Kingdom, and (2) Mn levels in betel quids, its individual components and other Bangladeshi foods.

Results: Betel quid chewers displayed a significantly higher (P = 0.009) mean Mn concentration in urine (1.93 μg L(-1)) compared to non-chewers (0.62 μg L(-1)). High levels of Mn were detected in Piper betel leaves with an overall average of 135 mg kg(-1) (range 26 -518 mg kg(-1)). The mean concentration of Mn in betel quid was 41 mg kg(-1) (SD 27) and the daily intake of Mn in the Bangladeshi population was estimated to be 20.3 mg/day. Chewing six betel quids could contribute up to 18% of the maximum recommended daily intake of Mn.

Conclusion: We have demonstrated that Mn in betel quids is an overlooked source of exposure to Mn in humans. Chewers display a 3.1 fold increased urinary Mn concentration compared to non-chewers. The practice of betel quid chewing contributes a high proportion of the maximum recommended daily intake of Mn, which could make chewers in Bangladesh more vulnerable to Mn neurotoxicity.

MeSH terms

  • Adult
  • Aged
  • Areca / chemistry*
  • Bangladesh / ethnology
  • Female
  • Humans
  • Male
  • Manganese / administration & dosage*
  • Manganese / adverse effects
  • Manganese / urine
  • Mass Spectrometry / methods
  • Mastication
  • Middle Aged
  • Risk Assessment
  • United Kingdom

Substances

  • Manganese