Ablation of Akt2 induces autophagy through cell cycle arrest, the downregulation of p70S6K, and the deregulation of mitochondria in MDA-MB231 cells

PLoS One. 2011 Jan 31;6(1):e14614. doi: 10.1371/journal.pone.0014614.

Abstract

Background: Akt/PKB is a promising anticancer therapeutic target, since abnormally elevated Akt activity is directly correlated to tumor development, progression, poor prognosis and resistance to cancer therapies. Currently, the unique role of each Akt isoform and their relevance to human breast cancer are poorly understood.

Methodology/principal findings: We previously found that Akt1, 2 and 3 are localized at specific subcellular compartments (the cytoplasm, mitochondria and nucleus, respectively), raising the possibility that each isoform may have unique functions and employ different regulation mechanisms. By systematically studying Akt-ablated MDA-MB231 breast cancer cells with isoform-specific siRNA, we here show that Akt2 is the most relevant isoform to cell proliferation and survival in our cancer model. Prolonged ablation of Akt2 with siRNA resulted in cell-cycle arrest in G0/G1 by downregulating Cdk2 and cyclin D, and upregulating p27. The analysis of the Akt downstream signaling pathways suggested that Akt2 specifically targets and activates the p70S6K signaling pathway. We also found that Akt2 ablation initially resulted in an increase in the mitochondrial volume concomitantly with the upregulation of PGC-1α, a regulator of mitochondrial biogenesis. Prolonged ablation of Akt2, but not Akt1 or Akt3, eventually led to cell death by autophagy of the mitochondria (i.e., mitophagy).

Conclusions/significance: Collectively, our data demonstrates that Akt2 augments cell proliferation by facilitating cell cycle progression through the upregulation of the cell cycle engine, and protects a cell from pathological autophagy by modulating mitochondrial homeostasis. Our data, thus, raises the possibility that Akt2 can be an effective anticancer target for the control of (breast) cancer.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Autophagy* / drug effects
  • Autophagy* / genetics
  • Breast Neoplasms / pathology*
  • Cell Cycle Proteins
  • Cell Cycle*
  • Cell Line, Tumor
  • Cell Proliferation
  • Cell Survival
  • Down-Regulation
  • Drug Delivery Systems / methods
  • Female
  • Humans
  • Mitochondria / pathology*
  • Protein Isoforms
  • Proto-Oncogene Proteins c-akt / deficiency
  • Proto-Oncogene Proteins c-akt / genetics*
  • RNA, Small Interfering / pharmacology*
  • Ribosomal Protein S6 Kinases, 70-kDa / genetics*

Substances

  • Cell Cycle Proteins
  • Protein Isoforms
  • RNA, Small Interfering
  • AKT2 protein, human
  • Proto-Oncogene Proteins c-akt
  • Ribosomal Protein S6 Kinases, 70-kDa