Telomerase reverse transcriptase protects ATM-deficient hematopoietic stem cells from ROS-induced apoptosis through a telomere-independent mechanism

Blood. 2011 Apr 21;117(16):4169-80. doi: 10.1182/blood-2010-08-297390. Epub 2011 Feb 4.

Abstract

Telomerase reverse transcriptase (TERT) contributes to the prevention of aging by a largely unknown mechanism that is unrelated to telomere lengthening. The current study used ataxia-telangiectasia mutated (ATM) and TERT doubly deficient mice to evaluate the contributions of 2 aging-regulating molecules, TERT and ATM, to the aging process. ATM and TERT doubly deficient mice demonstrated increased progression of aging and had shorter lifespans than ATM-null mice, while TERT alone was insufficient to affect lifespan. ATM-TERT doubly null mice show in vivo senescence, especially in hematopoietic tissues, that was dependent on p16(INK4a) and p19(ARF), but not on p21. As their HSCs show decreased stem cell activities, accelerated aging seen in these mice has been attributed to impaired stem cell function. TERT-deficient HSCs are characterized by reactive oxygen species (ROS) fragility, which has been suggested to cause stem cell impairment during aging, and apoptotic HSCs are markedly increased in these mice. p38MAPK activation was indicated to be partially involved in ROS-induced apoptosis in TERT-null HSCs, and BCL-2 is suggested to provide a part of the protective mechanisms of HSCs by TERT. The current study demonstrates that TERT mitigates aging by protecting HSCs under stressful conditions through telomere length-independent mechanisms.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aging*
  • Animals
  • Apoptosis*
  • Ataxia Telangiectasia Mutated Proteins
  • Cell Cycle Proteins / genetics*
  • Cell Cycle Proteins / metabolism
  • Cellular Senescence
  • DNA-Binding Proteins / genetics*
  • DNA-Binding Proteins / metabolism
  • Gene Deletion
  • Hematopoietic Stem Cells / cytology*
  • Hematopoietic Stem Cells / metabolism
  • Mice
  • Mice, Inbred C57BL
  • Protein Serine-Threonine Kinases / genetics*
  • Protein Serine-Threonine Kinases / metabolism
  • Proto-Oncogene Proteins c-bcl-2 / metabolism
  • Reactive Oxygen Species / metabolism*
  • Telomerase / genetics
  • Telomerase / metabolism*
  • Telomere / metabolism
  • Tumor Suppressor Proteins / genetics*
  • Tumor Suppressor Proteins / metabolism
  • p38 Mitogen-Activated Protein Kinases / metabolism

Substances

  • Cell Cycle Proteins
  • DNA-Binding Proteins
  • Proto-Oncogene Proteins c-bcl-2
  • Reactive Oxygen Species
  • Tumor Suppressor Proteins
  • Ataxia Telangiectasia Mutated Proteins
  • Atm protein, mouse
  • Protein Serine-Threonine Kinases
  • p38 Mitogen-Activated Protein Kinases
  • Telomerase