Various aspects of piscine toxicology

Interdiscip Toxicol. 2010 Sep;3(3):100-4. doi: 10.2478/v10102-010-0020-4.

Abstract

In opposition to toxicology of mammals piscine toxicology is closely connected with the conditions of external environment. The aquatic environment is necessary for embryonic development and after hatching during short or long-lasting larval period of most fish species. An aquatic environment is polluted by many industrial and agricultural wastes. Ammonia as a toxic and common compound in water have negative influence for aquaculture especially in intensive fish culture, recirculation system and hatchery facilities. Acute toxicity of ammonia was investigated in carp Cyprinus carpio L. and developmental stages of chub Squalius cephalus L. Changes in the peripheral blood characteristics and hemopoietic tissues of carp occurred after exposition to ammonia in acute tests and 3, 5 and 10 weeks sublethal concetration. The observed increase of the concentration of most amino acids in fish intoxicated with amonia suggests that the process reflects detoxication of ammonia which takes place both in the brain and muscles after 3 weeks of exposition. Phenol intoxication tests induced considerable unfavorable changes in the blood and dystrophic and necrobiotic lesions in tissues of fish leading to dysfunction both hemopoietic and reproductive processes.In study on fish reproduction disruptors the influence of oxygenated polycyclic hydrocarbons (17-β-estradiol, 4,7-dihydroxyisoflavone, 1,6-dihydroxynaphthalene and 1,5-dihydroxynaphthalene) and oxygenated monocyclic hydrocarbons (phenol, 4-n-heptylphenol, 4-n-buthylphenol, 4-sec-buthylphenol; 4-tert-buthylphenol) was assessed using histopathological methods. It was established that examined oxygenated aromatic hydrocarbons both natural (17-β-estradiol and 4,7-dihydroxyisoflavone) and synthetic can disrupt the differentiation of primary and secondary sex traits in pikeperch Sander lucioperca L. The chronic activity of these "biomimetics of estrogen" can lead to the disappearance of natural fish population. In vivo and in vitro tests were used to exam dibutyl phthalate and butyl benzyl phthalate impact on the development of the reproductive system of pikeperch. Additional as multigenerational studies are needed to clarify influence long term exposure of fish to environmental concentrations of endocrine disrupting chemicals.Hydrogen peroxide used in fish therapy is known to be toxic for sensitive species. In our work safe concentrations and exposure times was evaluated for ide Leuciscus idus L. and pike Esox lucius L. fry. The intensity of lesions in gills, skin, pseudobranch and thymus of exposed fish were connected with the time of bath.Actually anesthetics are routinely required during stressful procedures with fish, but data regarding the safety of individual anesthetics to different fish species are still few and insufficient. The influence of clove oil, MS-222 and 2-phenoxyaethanol anesthesia on fish organism was investigated in our faculty with cooperation with Research Institute of Fish Culture and Hydrobiology, Vodnany, Czech Republic.

Keywords: ammonia; anesthetics; fish reproduction disruptors; oxidative disinfectants; phenol; toxicity.