Kinetic Monte Carlo study of nucleation processes on patterned surfaces

J Chem Phys. 2010 Nov 28;133(20):204101. doi: 10.1063/1.3506898.

Abstract

The properties of template-directed nucleation are studied in the transition region where full nucleation control is lost and additional nucleation beyond the prepatterned structure is observed. To get deeper insight into the microscopic mechanisms, Monte Carlo simulations were performed. In this context, the previously used continuous algorithm [F. Kalischewski, J. Zhu, and A. Heuer, Phys. Rev. B 77, 155401, (2008)] was replaced by a discrete one to reduce simulation time and to allow more detailed calculations. The applied method is based on the assumption that the molecules on the surface occupy the sites of a simple fcc lattice. It is shown that a careful mapping of the continuous Monte Carlo technique onto the discrete algorithm leads to a good reproduction of the former results by means of the latter method. Furthermore, the new method facilitates the calculation of the spatial distribution of nuclei on the surface. This provides a detailed comparison with experimental data.