50-nm local anodic oxidation technology of semiconductor heterostructures

J Nanosci Nanotechnol. 2010 Jul;10(7):4448-53. doi: 10.1166/jnn.2010.2362.

Abstract

A novel approach to local anodic oxidation technique, which leads to approximately equal 50 nm wide line patterns, is described. The technique is utilized to prepare quantum point contact on a low-mobility semiconductor heterostructure. Transport measurements show quantized conductance in zero magnetic field at 4.2 K thanks to very short one-dimensional constriction. The technique is also used for the definition of low-to-room temperature sub-micrometer Hall probes to show its applicability for the room temperature applications. The magnetic-field resolution and the sensitivity of the probes are evaluated in dependence of the probe dimensions, bias current, and temperature. The 200-nm probe shows magnetic-field resolution of 47 microT/(Hz)(1/2) at 140 Hz and at 4.2 K, when it is driven by 5 microA bias current. The novel approach is promising for the development of the future nano-devices operated both at low and room temperatures. To our knowledge, local anodic oxidation technique applied directly to shallow semiconductor heterostructure has been successfully used for the room temperature application for the first time.