Thermal behavior of a quantum dot nanocomposite as a color converting material and its application to white LED

Nanotechnology. 2010 Dec 10;21(49):495704. doi: 10.1088/0957-4484/21/49/495704. Epub 2010 Nov 16.

Abstract

We present a novel nanocomposite, a mixture of a CdSe/CdS/ZnS red quantum dot (QD), an Sr(2)SiO(4):Eu green phosphor and silicone resin for a color converting material. The temperature rise and the optical characteristics of the nanocomposite due to the addition of the QD have been investigated in terms of QD content ratio and the mixing components. The experimental results suggested that a small addition of QDs generated a large amount of heat during light conversion at the wavelength of QD emission. Considering the temperature rise in a nanocomposite, we applied 0.2 wt% QDs on an InGaN blue LED chip. As a result, we could achieve a white LED device with a high color rendering index of 83.2, a high luminance of 65.86 lm W(-1) and a moderate temperature increase of 94 °C. The white LED converted by the newly developed QD-phosphor nanocomposite has great potential in future illumination.

Publication types

  • Research Support, Non-U.S. Gov't