TRPA1 contributes to cold hypersensitivity

J Neurosci. 2010 Nov 10;30(45):15165-74. doi: 10.1523/JNEUROSCI.2580-10.2010.

Abstract

TRPA1 is a nonselective cation channel expressed by nociceptors. Although it is widely accepted that TRPA1 serves as a broad irritancy receptor for a variety of reactive chemicals, its role in cold sensation remains controversial. Here, we demonstrate that mild cooling markedly increases agonist-evoked rat TRPA1 currents. In the absence of an agonist, even noxious cold only increases current amplitude slightly. These results suggest that TRPA1 is a key mediator of cold hypersensitivity in pathological conditions in which reactive oxygen species and proinflammatory activators of the channel are present, but likely plays a comparatively minor role in acute cold sensation. Supporting this, cold hypersensitivity can be induced in wild-type but not Trpa1(-/-) mice by subcutaneous administration of a TRPA1 agonist. Furthermore, the selective TRPA1 antagonist HC-030031 [2-(1,3-dimethyl-2,6-dioxo-1,2,3,6-tetrahydro-7H-purin-7-yl)-N-(4-isopropylphenyl)acetamide] reduces cold hypersensitivity in rodent models of inflammatory and neuropathic pain.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cold Temperature*
  • Electrophysiology
  • Ganglia, Spinal / physiology
  • Hyperalgesia / metabolism*
  • Hyperalgesia / physiopathology
  • Mice
  • Mice, Knockout
  • Nociceptors / physiology*
  • Rats
  • TRPA1 Cation Channel
  • Thermosensing / physiology*
  • Transient Receptor Potential Channels / agonists
  • Transient Receptor Potential Channels / antagonists & inhibitors
  • Transient Receptor Potential Channels / metabolism*

Substances

  • TRPA1 Cation Channel
  • Transient Receptor Potential Channels
  • Trpa1 protein, mouse