Evaluating resistance to Bt toxin Cry1Ab by F2 screen in European populations of Ostrinia nubilalis (Lepidoptera: Crambidae)

J Econ Entomol. 2010 Oct;103(5):1803-9. doi: 10.1603/ec10055.

Abstract

The large-scale cultivation of transgenic crops producing Bacillus thuringiensis (Bt) toxins have already lead to the evolution of Bt resistance in some pest populations targeted by these crops. We used the F2 screening method for further estimating the frequency of resistance alleles of the European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), to Bt maize, Zea mays L., producing the Cry1Ab toxin. In France, Germany, and Italy, 784, 455, and 80 lines of European corn borer were screened for resistance to Mon810 maize, respectively. In Slovakia, 26 lines were screened for resistance to the Cry1Ab toxin. The cost of F2 screen performed in the four countries varied from U.S. dollars 300 to dollars 1300 per line screened. The major difference in cost was mostly due to a severe loss of univoltine lines during the screen in Germany and Slovakia. In none of the screened lines did we detect alleles conferring resistance to Mon810 maize or to the Cry1Ab toxin. The frequency of resistance alleles were < 1.0 x 10(-3), < 1.6 x 10(-3), < 9.2 x 10(-3), and < 2.6 x 10(-2) in France, Germany, Italy, and Slovakia, with 95% probability, respectively. The average detection probability over all lines was approximately 90%. Making the assumption that European corn borer populations in these countries belong to the same genetic entity, the frequency of alleles conferring resistance to the Cry1Ab produced by the Mon810 maize in western and central Europe was 1.0 x 10(-4), with a 95% confidence interval of 0-3.0 x 10(-4).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bacillus thuringiensis Toxins
  • Bacterial Proteins / toxicity*
  • Costs and Cost Analysis
  • Drug Resistance
  • Endotoxins / toxicity*
  • Europe
  • Female
  • France
  • Germany
  • Hemolysin Proteins / toxicity*
  • Lepidoptera / classification
  • Lepidoptera / drug effects*
  • Lepidoptera / genetics
  • Lepidoptera / physiology
  • Male
  • Pest Control, Biological / economics
  • Pest Control, Biological / methods*
  • Reproduction / drug effects
  • Zea mays / parasitology

Substances

  • Bacillus thuringiensis Toxins
  • Bacterial Proteins
  • Endotoxins
  • Hemolysin Proteins
  • insecticidal crystal protein, Bacillus Thuringiensis