Caspase-10-dependent cell death in Fas/CD95 signalling is not abrogated by caspase inhibitor zVAD-fmk

PLoS One. 2010 Oct 26;5(10):e13638. doi: 10.1371/journal.pone.0013638.

Abstract

Background: Upon CD95/Fas ligation, the initiator caspase-8 is known to activate effector caspases leading to apoptosis. In the presence of zVAD-fmk, a broad-spectrum caspase inhibitor, Fas engagement can also trigger an alternative, non-apoptotic caspase-independent form of cell death, which is initiated by RIP1. Controversy exists as to the ability of caspase-10 to mediate cell death in response to FasL (CD95L or CD178). Herein, the role of caspase-10 in FasL-induced cell death has been re-evaluated.

Methodology and principal findings: The present study shows that FasL-induced cell death was completely impaired in caspase-8- and caspase-10-doubly deficient (I9-2e) Jurkat leukaemia T-cell lines. Over-expressing of either caspase-8 or caspase-10 in I9-2e cells triggered cell death and restored sensitivity to FasL, further arguing for a role of both initiator caspases in Fas apoptotic signalling. In the presence of zVAD-fmk, FasL triggered an alternative form of cell death similarly in wild-type (A3) and in caspase-8-deficient Jurkat cells expressing endogenous caspase-10 (clone I9-2d). Cell death initiated by Fas stimulation in the presence of zVAD-fmk was abrogated in I9-2e cells as well as in HeLa cells, which did not express endogenous caspase-10, indicating that caspase-10 somewhat participates in this alternative form of cell death. Noteworthy, ectopic expression of caspase-10 in I9-2e and HeLa cells restored the ability of FasL to trigger cell death in the presence of zVAD-fmk. As a matter of fact, FasL-triggered caspase-10 processing still occurred in the presence of zVAD-fmk.

Conclusions and significance: Altogether, these data provide genetic evidence for the involvement of initiator caspase-10 in FasL-induced cell death and indicate that zVAD-fmk does not abrogate caspase-10 processing and cytotoxicity in Fas signalling. Our study also questions the existence of an alternative caspase-independent cell death pathway in Fas signalling.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Chloromethyl Ketones / pharmacology*
  • Blotting, Western
  • Caspase 10 / physiology*
  • Caspase Inhibitors
  • Cell Death / physiology*
  • Cysteine Proteinase Inhibitors / pharmacology*
  • Flow Cytometry
  • HeLa Cells
  • Humans
  • Jurkat Cells
  • Signal Transduction / physiology*
  • fas Receptor / metabolism*

Substances

  • Amino Acid Chloromethyl Ketones
  • Caspase Inhibitors
  • Cysteine Proteinase Inhibitors
  • benzyloxycarbonylvalyl-alanyl-aspartyl fluoromethyl ketone
  • fas Receptor
  • Caspase 10