Conductive polymer-based sensors for biomedical applications

Biosens Bioelectron. 2011 Jan 15;26(5):1825-32. doi: 10.1016/j.bios.2010.09.046. Epub 2010 Oct 1.

Abstract

A class of organic polymers, known as conducting polymers (CPs), has become increasingly popular due to its unique electrical and optical properties. Material characteristics of CPs are similar to those of some metals and inorganic semiconductors, while retaining polymer properties such as flexibility, and ease of processing and synthesis, generally associated with conventional polymers. Owing to these characteristics, research efforts in CPs have gained significant traction to produce several types of CPs since its discovery four decades ago. CPs are often categorised into different types based on the type of electric charges (e.g., delocalized pi electrons, ions, or conductive nanomaterials) responsible for conduction. Several CPs are known to interact with biological samples while maintaining good biocompatibility and hence, they qualify as interesting candidates for use in a numerous biological and medical applications. In this paper, we focus on CP-based sensor elements and the state-of-art of CP-based sensing devices that have potential applications as tools in clinical diagnosis and surgical interventions. Representative applications of CP-based sensors (electrochemical biosensor, tactile sensing 'skins', and thermal sensors) are briefly discussed. Finally, some of the key issues related to CP-based sensors are highlighted.

MeSH terms

  • Biosensing Techniques / instrumentation*
  • Conductometry / instrumentation*
  • Electric Conductivity
  • Electrodes*
  • Equipment Design
  • Polymers / chemistry*

Substances

  • Polymers