De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities

Nat Chem. 2010 Nov;2(11):944-8. doi: 10.1038/nchem.834. Epub 2010 Sep 12.

Abstract

Metal-organic frameworks--a class of porous hybrid materials built from metal ions and organic bridges--have recently shown great promise for a wide variety of applications. The large choice of building blocks means that the structures and pore characteristics of the metal-organic frameworks can be tuned relatively easily. However, despite much research, it remains challenging to prepare frameworks specifically tailored for particular applications. Here, we have used computational modelling to design and predictively characterize a metal-organic framework (NU-100) with a particularly high surface area. Subsequent experimental synthesis yielded a material, matching the calculated structure, with a high BET surface area (6,143 m(2) g(-1)). Furthermore, sorption measurements revealed that the material had high storage capacities for hydrogen (164 mg g(-1)) and carbon dioxide (2,315 mg g(-1))--gases of high importance in the contexts of clean energy and climate alteration, respectively--in excellent agreement with predictions from modelling.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Computer Simulation
  • Crystallography, X-Ray
  • Gases*
  • Metals / chemistry*
  • Organic Chemicals / chemistry*
  • Surface Properties
  • Thermogravimetry

Substances

  • Gases
  • Metals
  • Organic Chemicals

Associated data

  • PubChem-Substance/99239417
  • PubChem-Substance/99239418
  • PubChem-Substance/99239419
  • PubChem-Substance/99239420
  • PubChem-Substance/99239421
  • PubChem-Substance/99239422
  • PubChem-Substance/99239423
  • PubChem-Substance/99239424
  • PubChem-Substance/99239425
  • PubChem-Substance/99239426