Multivariate chemical mapping of pigments and binders in easel painting cross-sections by micro IR reflection spectroscopy

Anal Bioanal Chem. 2011 Mar;399(9):3133-45. doi: 10.1007/s00216-010-4239-x. Epub 2010 Oct 9.

Abstract

Paintings are composed of superimposed layers of inorganic and organic materials (pigments and binders). Knowledge of the stratigraphic sequence of these heterogeneous layers is fundamental for understanding the artist's painting technique and for conservation issues. In this study, micro-IR mapping experiments in reflection mode have been carried out on cross-sections taken from simulations of ancient easel paintings. The objective was to locate both organic binders and inorganic pigments. Chemical maps have been re-constructed using the common approach based on the integration of specific infrared bands. However, owing to the complexity of painting materials, this approach is not always applicable when dealing with broad and superimposed spectral features and with reststrahlen or derivative-like bands resulting from acquisition in reflection mode. To overcome these limitations, principal-component analysis has been successfully used for the re-construction of the image, extracting the relevant information from the complex full spectral data sets and obtaining reliable chemical distributions of the stratigraphy materials. Different pigment-binder combinations have been evaluated in order to understand limitations and strengths of the approach. Finally, the method has been applied for stratigraphic characterization of a cross-section from a 17th century wooden sculpture identifying both the original paint layer and the several overpaintings constituting the complex stratigraphy.