Prepubertal ethanol exposure alters hypothalamic transforming growth factor-α and erbB1 receptor signaling in the female rat

Alcohol. 2011 Mar;45(2):173-81. doi: 10.1016/j.alcohol.2010.08.014. Epub 2010 Oct 6.

Abstract

Glial-derived transforming growth factor alpha (TGFα) activates the erbB1/erbB2 receptor complex on adjacent glial cells in the medial basal hypothalamus (MBH). This receptor activation stimulates the synthesis and release of prostaglandin-E(2) (PGE(2)) from the glial cells, which then induces the release of prepubertal luteinizing hormone-releasing hormone (LHRH) secretion from nearby nerve terminals; thus, showing the importance of glial-neuronal communications at the time of puberty. Ethanol (EtOH) is known to cause depressed prepubertal LHRH secretion and delayed pubertal development. In this study, we assessed whether short-term EtOH exposure could alter the hypothalamic glial to glial signaling components involved in prepubertal PGE(2) secretion. Immature female rats began receiving control or EtOH diets beginning when 27 days old. The animals were killed by decapitation after 4 and 6 days of treatment and confirmed to be in the late juvenile stage of development. Blood and brain tissues were collected for gene, protein, and hormonal assessments. Real-time polymerase chain reaction (PCR) analysis demonstrated that EtOH did not affect basal levels of erbB1 gene expression in the MBH. Expression of total erbB1 protein was also unaffected; however, the EtOH caused suppressed phosphorylation of erbB1 protein in the MBH at both 4 and 6 days (P<.01) as revealed by Western blotting. Phosphorylation and total protein levels of erbB2 receptor were not affected by EtOH exposure. Because this receptor is critical for PGE(2) synthesis/release, which mediates the secretion of LHRH, we assessed whether in vivo EtOH exposure could affect the release of PGE(2). EtOH exposure for 6 days suppressed (P<.01) basal levels of PGE(2) released into the medium. The effects of 4- and 6-day EtOH exposure on gene and protein expressions of TGFα, an upstream component in the activation of erbB1/erbB2, were also studied. The levels of TGFα mRNA were increased markedly at 4 days (P<.001), but declined to near basal levels by 6 days in the EtOH-treated animals. The EtOH caused increases in TGFα protein expression at both 4 (P<.001) and 6 (P<.01) days; hence, suggesting that the EtOH inhibited release of the peptide. We confirmed this inhibition by showing decreased (P<.01) TGFα released from MBHs incubated in vitro following 6 days of EtOH exposure in vivo. Thus, these results demonstrate that EtOH is capable of interfering with hypothalamic glial to glial signaling processes involved in prepubertal PGE(2) secretion.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Dinoprostone / metabolism
  • ErbB Receptors / metabolism*
  • Ethanol / pharmacology*
  • Female
  • Hypothalamus / drug effects*
  • Hypothalamus / metabolism*
  • Phosphorylation / drug effects
  • Rats
  • Rats, Sprague-Dawley
  • Receptor, ErbB-2 / metabolism
  • Sexual Maturation
  • Signal Transduction / drug effects*
  • Transforming Growth Factor alpha / metabolism*

Substances

  • Transforming Growth Factor alpha
  • Ethanol
  • ErbB Receptors
  • Erbb2 protein, rat
  • Receptor, ErbB-2
  • Dinoprostone