[Spatiotemporal pattern of alpine grassland productivity in Qiangtang Plateau]

Ying Yong Sheng Tai Xue Bao. 2010 Jun;21(6):1400-4.
[Article in Chinese]

Abstract

Based on the meteorological data and remote sensing data, and by using vegetation-climate comprehensive model and CASA model, this paper analyzed the climate change trend and the spatiotemporal pattern of alpine grassland potential and actual net primary productivity (NPP) in Qiantang Plateau. In 1955-2004, the mean annual temperature and annual cumulated precipitation in the Plateau increased by 1.37 degrees C and 63 mm, respectively. The climate in the central and eastern parts of the Plateau became warmer and wetter, whereas it was warmer and dryer in the western part. However, the regional climate change did not yet result in grassland degradation. The mean potential NPP of alpine grassland was in the order of eastern part > central part > western part. From 1982 to 2004, the potential NPP in the central part had the largest increment (0.55 t x hm(-2) x a(-1)), followed by in the eastern part (0.51 t x hm(-2) x a(-1)) and western part (0.21 t x hm(-2) x a(-1)), which was consequent with the spatiotemporal pattern of climate change in the study area. In contrast, the actual NPP in the eastern, central, and western parts in the past two decades was -0.19, -0.03, and 0.20 t x hm(-2) x a(-1), respectively. Overgrazing was the main reason of grassland degradation in the central and eastern parts, and the central part was the key layout area for the implement of 'grazing withdrawal and management of grassland' project.

Publication types

  • English Abstract
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Altitude
  • Climate Change*
  • Cold Temperature*
  • Conservation of Natural Resources*
  • Ecosystem*
  • Models, Theoretical
  • Poaceae / growth & development*
  • Satellite Communications
  • Tibet