Suppression of Ycf1p function by Cka1p-dependent phosphorylation is attenuated in response to salt stress

FEMS Yeast Res. 2010 Nov;10(7):839-57. doi: 10.1111/j.1567-1364.2010.00677.x. Epub 2010 Aug 31.

Abstract

The yeast vacuolar membrane protein Ycf1p and its mammalian counterpart, MRP1, belong to the ABCC subfamily of ATP-binding cassette transporters. Genetic evidence suggests that the yeast casein kinase 2α, Cka1p, negatively regulates Ycf1p function via phosphorylation of Ser251 within the N-terminus. In this study, we provide strong evidence that Cka1p regulates Ycf1p function via phosphorylation of Ser251. We show that the CK2 holoenzyme interacts with Ycf1p. However, genetic analysis suggests that only Cka1p is required for Ser251 phosphorylation, as the deletion of CKA1 significantly reduces Ser251 phosphorylation in vivo. Furthermore, purified recombinant Cka1p phosphorylates a Ycf1p-derived peptide containing Ser251. We also demonstrate that Ycf1p function is induced in response to high salt stress. Induction of the Ycf1p function strongly correlates with reduced phosphorylation of Ser251. Importantly, Cka1p activity in vivo is similarly reduced in response to salt stress, consistent with our finding that Cka1p directly phosphorylates Ser251 of Ycf1p. We provide genetic and biochemical evidence that strongly suggests that the induction of Ycf1p function is the result of decreased phosphorylation of Ser251. In conclusion, our work demonstrates a novel biochemical role for Cka1p regulation of Ycf1p function in the cellular response of yeast to salt stress.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • ATP-Binding Cassette Transporters / metabolism*
  • Casein Kinase II / metabolism*
  • Gene Expression Regulation, Fungal*
  • Osmotic Pressure*
  • Phosphorylation
  • Saccharomyces cerevisiae / physiology*
  • Saccharomyces cerevisiae Proteins / metabolism*
  • Salts / metabolism*
  • Stress, Physiological*

Substances

  • ATP-Binding Cassette Transporters
  • Saccharomyces cerevisiae Proteins
  • Salts
  • YCF1 protein, S cerevisiae
  • Casein Kinase II