Mechanotransduction in the renal tubule

Am J Physiol Renal Physiol. 2010 Dec;299(6):F1220-36. doi: 10.1152/ajprenal.00453.2010. Epub 2010 Sep 1.

Abstract

The role of mechanical forces in the regulation of glomerulotubular balance in the proximal tubule (PT) and Ca(2+) signaling in the distal nephron was first recognized a decade ago, when it was proposed that the microvilli in the PT and the primary cilium in the cortical collecting duct (CCD) acted as sensors of local tubular flow. In this review, we present a summary of the theoretical models and experiments that have been conducted to elucidate the structure and function of these unique apical structures in the modulation of Na(+), HCO(3)(-), and water reabsorption in the PT and Ca(2+) signaling in the CCD. We also contrast the mechanotransduction mechanisms in renal epithelium with those in other cells in which fluid shear stresses have been recognized to play a key role in initiating intracellular signaling, most notably endothelial cells, hair cells in the inner ear, and bone cells. In each case, small hydrodynamic forces need to be greatly amplified before they can be sensed by the cell's intracellular cytoskeleton to enable the cell to regulate its membrane transporters or stretch-activated ion channels in maintaining homeostasis in response to changing flow conditions.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Animals
  • Bicarbonates / metabolism
  • Cells, Cultured
  • Dogs
  • Epithelial Cells / physiology
  • Kidney Cortex / physiology
  • Kidney Tubules, Collecting / physiology
  • Kidney Tubules, Proximal / physiology*
  • Mechanotransduction, Cellular / physiology*
  • Mice
  • Microvilli / physiology
  • Models, Animal
  • Sodium / metabolism

Substances

  • Bicarbonates
  • Sodium