Pluripotent stem cell-derived natural killer cells for cancer therapy

Transl Res. 2010 Sep;156(3):147-54. doi: 10.1016/j.trsl.2010.07.008. Epub 2010 Aug 1.

Abstract

Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) provide an accessible, genetically tractable, and homogenous starting cell population to efficiently study human blood cell development. These cell populations provide platforms to develop new cell-based therapies to treat both malignant and nonmalignant hematological diseases. Our group previously demonstrated the ability of hESC-derived hematopoietic precursors to produce functional natural killer (NK) cells as well as an explanation of the underlying mechanism responsible for the inefficient development of T and B cells from hESCs. hESCs and iPSCs, which can be engineered reliably in vitro, provide an important new model system to study human lymphocyte development and produce enhanced cell-based therapies with the potential to serve as a "universal" source of antitumor lymphocytes. This review will focus on the application of hESC-derived NK cells with currently used and novel therapeutics for clinical trials, barriers to translation, and future applications through genetic engineering approaches.

Publication types

  • Research Support, N.I.H., Extramural
  • Review

MeSH terms

  • Animals
  • B-Lymphocytes / immunology
  • Carcinoma, Renal Cell / surgery
  • Cell Differentiation
  • Clinical Trials as Topic
  • Hematologic Neoplasms / surgery*
  • Humans
  • Immunotherapy, Adoptive / methods
  • Kidney Neoplasms / surgery
  • Killer Cells, Natural / transplantation*
  • Lymphocytes / cytology
  • Lymphocytes / physiology
  • Melanoma / surgery
  • Mice
  • Models, Animal
  • Neoplasms / surgery*
  • Pluripotent Stem Cells / cytology
  • Pluripotent Stem Cells / transplantation*
  • Spinal Cord Injuries / surgery
  • Stem Cell Transplantation / methods*
  • T-Lymphocytes / immunology