Effect of concentration and addition of ions on the adsorption of aerosol-OT to sapphire

Langmuir. 2010 Sep 21;26(18):14567-73. doi: 10.1021/la101969p.

Abstract

Aerosol-OT (sodium bis 2-ethylhexyl sulfosuccinate or NaAOT) adsorbs to hydrophilic sapphire solid surfaces. The structure of the formed bilayer has been determined over the concentration range 0.2-7.4 mM NaAOT. It was found that the hydrocarbon tails pack at maximum packing limit at very low concentrations, and that the thickness of the bilayer was concentration-independent. The adsorption was found to increase with concentration, with the surfactant molecules packing closer laterally. The area per molecule was found to change from 138 ± 25 to 51 ± 4 A(2) over the concentration range studied, with the thickness of the layer being constant at 33 ± 2 A. Addition of small amounts of salt was found to increase the surface excess, with the bilayer being thinner with a slightly larger area per molecule. Addition of different salts of the same valency was found to have a very similar effect, as had the addition of NaOH and HCl. Hence, the effects of adding acid or base should be considered an effect of ionic strength rather than an effect of pH. Adsorption of NaAOT to the sapphire surface that carries an opposite charge to the anionic surfactant is similar in many respects to the adsorption reported previously for hydrophilic and hydrophobic silica surfaces. This suggests that the adsorption of NaAOT to a surface is driven primarily by NaAOT self-assembly rather than effects of electrostatic attraction to the interface.