Characteristic changes of motor unit activity in hip joint flexor muscles during voluntary isometric contraction during water immersion

J Electromyogr Kinesiol. 1996 Jun;6(2):83-95. doi: 10.1016/1050-6411(95)00020-8.

Abstract

The effect of whole body water immersion on the recruitment order of hip flexor motor units was investigated in 11 male subjects. Intramuscular spike potentials were recorded, with fine bipolar wire electrodes, from the iliopsoas, the sartorius, the rectus femoris and the tensor fasciae latae during voluntary isometric contraction while the subjects were standing erect with the hip on the test side flexed to 60 degrees and the knee flexed to 120 degrees . Data were analysed by measuring the recruitment threshold in slow ramp contraction and by a computer-aided amplitude-frequency histogram of the spike potentials during short sustained contraction. The motor units were classified as low-amplitude units if they delivered spike potentials of less than 0.5 mV and high-amplitude units if the spike potentials exceeded 0.5 mV. In the ramp experiments, exposure to water immersion gave rise to a sudden increase in the recruitment thresholds of the low-amplitude units in all muscles, while in the recruitment thresholds of the high-amplitude units, the alterations differed among the muscles. The thresholds in the rectus femoris and tensor fasciae latae increased in the same direction as those of the low-amplitude units, while those in the iliopsoas and sartorius decreased in the opposite direction. The amplitude-frequency histograms clearly indicated that these different alterations occurred in all subjects, without exception. We concluded that unloading induced by water immersion changed the recruitment order of motor units during isometric contraction in the iliopsoas and sartorius, facilitating the recruitment of their larger motor units.