Signal-to-noise performance of a short-wave infrared nanoinjection imager

Opt Lett. 2010 Aug 15;35(16):2699-701. doi: 10.1364/OL.35.002699.

Abstract

We report on the signal-to-noise performance of a nanoinjection imager, which is based on a short-wave IR InGaAs/GaAsSb/InP detector with an internal avalanche-free amplification mechanism. Test pixels in the imager show responsivity values reaching 250 A/W at 1550 nm, -75 degrees C, and 1.5V due to an internal charge amplification mechanism in the detector. In the imager, the measured imager noise was 28 electrons (e(-)) rms at a frame rate of 1950 frames/s. Additionally, compared to a high-end short-wave IR imager, the nanoinjection camera shows 2 orders of magnitude improved signal-to-noise ratio at thermoelectric cooling temperatures primarily due to the small excess noise at high amplification.