Component interactions, regulation and mechanisms of chloroplast signal recognition particle-dependent protein transport

Eur J Cell Biol. 2010 Dec;89(12):965-73. doi: 10.1016/j.ejcb.2010.06.020. Epub 2010 Aug 14.

Abstract

The chloroplast proteome comprises nuclear- and plastome-encoded proteins. In order to function correctly these proteins must be transported, either cotranslationally or posttranslationally, to their final destination in the chloroplast. Here the chloroplast signal recognition particle (cpSRP) which is present in two different stromal pools plays an essential role. On the one hand, the conserved 54kDa subunit (cpSRP54) is associated with 70S ribosomes to function in the cotranslational transport of the plastid-encoded thylakoid membrane protein D1. On the other hand, the cpSRP consists of cpSRP54 and a unique 43kDa subunit (cpSRP43) and facilitates the transport of nuclear-encoded light-harvesting chlorophyll-binding proteins (LHCPs), the most abundant membrane proteins of the thylakoids. In addition to cpSRP, the cpSRP receptor cpFtsY and the thylakoid membrane protein Alb3 are required for posttranslational LHCP integration in a GTP-dependent manner. In contrast to the universally conserved cytosolic SRP, the chloroplast SRP of higher plants lacks an SRP-RNA component. Interestingly, cpSRP-RNA genes have been identified in the plastome of lower plants, indicating that their cpSRP structure resembles the cytosolic SRP.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Chloroplast Proteins
  • Chloroplasts / metabolism*
  • Protein Binding
  • Protein Transport / physiology
  • Signal Recognition Particle / metabolism*
  • Thylakoids / metabolism

Substances

  • Chloroplast Proteins
  • Signal Recognition Particle